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QED with unstable vacuum - 01

QED with an unstable vacuum of the quantized Dirac or KG �eld
(spinor in example).
The Hamiltonian for spinor �eld ψ(x) interacting with external
electromagnetic �eld Aext (x,t) is formed in a standard way

He (t) =
Z

ψ̄(x) (�iγr+ eγAext (x,t) +m)ψ(x)dx
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QED with unstable vacuum - 02

Example of external �eld

Ē =
�
0, 0,E cosh�2 t

�
, Aµ = (0, 0, 0,�E tanh t)
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QED with unstable vacuum - 03

The Hamiltonians at tin and tout are di¤erent:

He (tin)�ϕ(x) = �ε(tin)�ϕ(x),
He (tout )�ϕ(x) = �ε(tout )�ϕ(x),

One can de�ne in a common way a set of creation and destruction
operators for electrons and positrons a†

n(tin), an(tin), b
†
n(tin), bn(tin)

and a†
n(tout ), an(tout ), b

†
n(tout ), bn(tout ) which obey common

commutation relations

[an(tin), a†
m(tin)]+ = [an(tout ), a†

m(tout )]+ =

[bn(tin), b†
m(tin)]+ = [bn(tout ), b†

m(tout )]+ = δmn

and all the others are zero.
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QED with unstable vacuum - 04

The Hamiltonians in terms of a†
n(tin), an(tin), b

†
n(tin), bn(tin) and a

†
n(tout ),

an(tout ), b†
n(tout ), bn(tout ) are diagonal:

He (tin) = ∑
n

h
+εna†

n(tin)an(tin) +� εnb†
n(tin), bn(tin)

i
,

He (tout ) = ∑
n

h
+εna†

n(tout )an(tout ) +
� εnb†

n(tout ), bn(tout )
i
,

The corresponding vacuums are

an(tin)j0, tini = bn(tin)j0, tini = 0,
an(tout )j0, tout i = bn(tout )j0, tout i = 0

Probability amplitude of transition from initial to �nal state

Min!out = htout jU(tout , tin)jtini =
= h0, tout j � � � an(tout )U(tout , tin)a†

n(tin) � � � j0, tini.
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QED with unstable vacuum - 05

Moving to Heizenberg representation in a standard way:

initial state operators a†
n(in), an(in) of electrons, and b†

n(in), bn(in) of
positrons; initial vacuum state

an(in)j0, ini = bn(in)j0, ini = 0;

�nal state operators a†
n(out), an(out), of electrons, and b†

n(out), bn(out) of
positrons; �nal vaccum state

an(out)j0, outi = bn(out)j0, outi = 0;

The probability amplitude for transition from an initial to a �nal state Min!out:

Min!out = houtjini = h0, outj � � � an(out)a†
n(in) � � � j0, ini.

Operators a†
n, an, b

†
n, bn obey common commutation relationsh
am(in), a†

n(in)
i
�
=
h
am(out), a†

n(out)
i
�

=
h
bm(in), b†

n(in)
i
�
=
h
bm(out), b†

n(out)
i
�
= δmn
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QED with unstable vacuum - 06

Moving to Heizenberg representation in a standard way:

The elementary probability amplitudes:

w (+j+)mn = c�1v h0, out
���am(out)a†

n(in)
��� 0, ini,

w (�j�)nm = c�1v h0, out
���bm(out)b†

n(in)
��� 0, ini ,

w (0j �+)nm = c�1v h0, out
���b†
n(in)a

†
m(in)

��� 0, ini ,
w (+� j0)mn = c�1v h0, out jam(out)bn(out)j 0, ini .

Bogolubov transformation connecting the sets of in- and out-operators:

a(out) =
h
w (+j+)†

i�1
a(in)� κw (+� j0) [w (�j�)]�1 b†(in),

b†(out) =
h
w (+j+)†

i�1
w (+� j0)† a(in) + [w (�j�)]�1 b†(in).

This relation is given by an unitary operator V :

V fa (out) , � � � gV † = fa (in) , � � � g , j0, ini = V j0, outi, V †V = I .
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QED with unstable vacuum - 07

The state of the system is described by density operator (density matrix)

The density operator of the system in terms of in-operators

ρ̌ (in) = ρ
�
a†(in), a(in), b†(in), b(in)

�
.

The density operator in terms of out-set of the operators

ρ̌(out) = V †ρ̌ (in)V .

We were interested in the density operator of the system that

has vacuum initial state (vacuum at tin)
has thermal initial state (system was in thermal equilibrium at tin)
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General density operators - 01

The generating operator Ř(J) that allows one to construct density operators ρ̌ with
di¤erent initial conditions can be introduced [1]:

Ř(J) = Z�1(J)Ř(J), trŘ(J) = 1, Z (J) = trŘ(J) ,

Ř(J) = : exp
�
∑
n

h
a†
n(in) (Jn,+ � 1) an(in) + b†

n(in) (Jn,� � 1) bn(in)
i�

: ,

Vacuum initial case Jn,ζ = 0, Ř(J = 0) = ρ̌(0) [2]:

ρ̌(0) = : exp
�
�∑

n

h
a†
n(in) an(in) + b†

n(in) bn(in)
i�

: = j0, inih0, inj.

Thermal initial state J = Jn,ζ (β) = e�En,ζ , En,ζ = β
�

εn,ζ � µζ

�
,

Ř(J = e�En,ζ ) = ρ̌(β) [3]:

ρ̌(β) = Z�1gr exp

"
�β

 
Ȟ �∑

ζ

µζŇζ

!#
,

Zgr = exp

"
κ ∑
n,ζ

ln
�
1+ κe�En,ζ

�#
.
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General density operators - 02

Using the Bogolubov transformation, it is possible to present the generating operator
Ř(J) in terms of out-operators:

Ř(J) = Z�1(J) jcvj2 det (1+ κAB)κ Ř(J),

Ř(J) = : exp
h
�a†(out) (1�D+) a(out)� b†(out) (1�D�) b(out)

�a†(out)C †b†(out)� b(out)Ca(out)
i

:, Jmn,ζ = δmnJn,ζ ,

D+ = w (+j+) (1+ κAB)�1 J+w (+j+)† , B = κw (0j �+)
DT� = w (�j�)

†
J� (1+ κBA)�1 w (�j�) , A (J) = J+B†J�,

C = w (�j�)†
J�B (1+ κAB)�1 J+w (+j+)† + κw (+� j0)† ,

Example: obtaining explicit form of density operator for vacuum initial state
Jn,ζ = 0:

ρ̌ (0) = jcvj2 : exp
�
�∑

n

h
a†
n(out)an(out) + b†

n(out)bn(out)

+κa†
n(out)w (+� j0)nn b†

n(out) + κbn(out)w (+� j0)†
nn an(out)

io
: .
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General density operators - 03

Knowing the explicit form of density operator, it is possible to calculate von Neumann
entropy:

S(ρ̌) = �kB trρ̌ ln ρ̌.

The entropy of vacuum initial state operator ρ̌(0) �the state is pure

S(ρ̌(0)) = 0,

The entropy of thermal initial state operator ρ̌(β) �the state is mixed

S(ρ̌(β)) = �kB ∑
nζ

�
κ
�
1� κNn,ζ(βjin)

�
ln
�
1� κNn,ζ(βjin)

�
+Nn,ζ(βjin) lnNn,ζ(βjin)

	
.

There is no di¤erence if trace calculated either in terms of in- or in terms of out-
operators, cause the evolution of the system is unitary.
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Reduced density operators of QED states - 01

However, if we are interested only in one subsystem (or only one of them is availiable
for observation), then we use the reduction procedure - we are averaging over one
of subsystems

Reduction procedure

ρ̌+ = tr�ρ̌ =
∞

∑
M=0

∑
fmg

(M !)�1 bhMfmg, outjρ̌jMfmg, outib ,

ρ̌� = tr+ρ̌ =
∞

∑
M=0

∑
fmg

(M !)�1 ahMfmg, outjρ̌jMfmg, outia ,

where the states are given by

jMfmg, outib = (M !)�1/2 b†
m1(out) . . . b†

mM (out)j0, outib ,
jMfmg, outia = (M !)�1/2 ja†

m1(out) . . . a†
mM (out)j0, outia.
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Reduced density operators of QED states - 02

The reduced density operators can be also obtained from reduced generating operators,
which are calculated by taking partial trace over one of the subsystems:

Ř� (J) = tr�Ř (J) ,

Ř+ (J) = Z�1+ (J) : exp
�
�∑

n
a†
n(out) [1�K+ (J)]nn an(out)

�
: ,

Ř� (J) = Z�1� (J) : exp
�
�∑

n
b†
n(out) [1�K� (J)]nn bn(out)

�
: ,

K� (J) = D� + C †
�
1+ κDT�

��κ
C ,

Z�1� (J) = Z�1 (J) jcvj2 det (1+ κAB)κ det (1+ κD�)
κ .

Then one can ontain reduced density operators with di¤erent initial states by setting
appropriate sources J.
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Reduced density operators of QED states - 03

Reduced density operators of electron and positron subsystems with initial vacuum state
can be obtained by setting J = 0 in Ř� (J) and have the form

ρ̌+ (0) = Ř+ (0) = jcvj2 : exp

(
�∑

n
a†
n(out)

"
1� P(+� j0)

jcvj2

#
nn

an(out)

)
: ,

ρ̌� (0) = Ř� (0) = jcvj2 : exp

(
�∑

n
b†
n(out)

"
1� P(+� j0)

jcvj2

#
nn

bn(out)

)
: ,

where P(+� j0)nn is the probability of creation of pair with given quantum numbers n.

Even if the initial state of the system was a pure state, these operators (and
reduced operators in general) describe mixed states, and their entropy is di¤erent
from the entropy of initial state.
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von Neumann reduction - 01

The other possible source of entropy generation in the system is decoherence, which
can occur in result of a measurement of a physical value by a classical instrument.

Reduction of density operator due to the measurements of number of particles:

ρ̌N = ∑
s
hs, outjρ̌(0)js, outiP̌s , P̌s = js, outihs, outj.

Vacuum initial state operator ρ̌ (0) after vN-reduction due to the
measurement of number of particles:

ρ̌N = jcvj2 ∑
f

Wf P̌f , ∑
f

=
∞

∑
M=0

M

∑
Z=1

∑
fm,ng

, P̌f = jf , outihf , outj,

Wf = jw (+� j0)n1n1 j
2m1 . . . jw (+� j0)nZ nZ j

2mZ , m1 +m2 + . . .+mz = M,

jf , outi =
�
a†
n1(out)b†

n1(out)
�m1

m1!
� � �
�
a†
nZ (out)b†

nZ (out)
�mZ

mZ !
j0, outi,

A.A. Shishmarev, S.P. Gavrilov, D.M. Gitman (Institute)States in QED with UV 10 of July 2015 16 / 23



Entropy of reduced density operators of QFT states - 01

Vacuum initial state

Expressing vacuum-to-vacuum transition probability jcvj2 in terms of mean numbers of
particles created by external �eld from vacuum Nn(0jout) (see, for example, [6]) we
obtained expression for the entropy of the reduced operators ρ̌�(0) to obtain

S
�
ρ̌�(0)

�
= ∑

n
S(ρ̌n,�(0)), S(ρ̌n,�(0)) = �kB trρ̌n,�(0) ln ρ̌n,�(0)

= �kB [κ (1� κNn (0jout)) ln (1� κNn (0jout)) +Nn (0jout) lnNn (0jout)] .

Thermal initial case

It is turned out that it is possible to do almost the same in thermal case and obtain the
expression for the entropy of the reduced operators ρ̌�(β) of the system that was initially
in thermal state

S
�
ρ̌�(β)

�
= �kB ∑

n
S
�
ρ̌n,�(β)

�
, S

�
ρ̌n,�(β)

�
= �kB trρ̌n,�(β) ln ρ̌n,�(β) =

= �kB fκ [1� κNn,� (βjout)] ln [1� κNn,� (βjout)] +Nn,� (βjout) lnNn,� (βjout)g .
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Entropy of von Neumann-reduced density operators - 01

Von Neumann reduction

The entropy of vN-reduced density operator ρ̌N which with initial vacuum state:

S(ρ̌N ) = �kB trρ̌N ln ρ̌N = �kB ∑
n

tr ρ̌N ,n ln ρ̌N ,n =

= �kB ∑
n
fκ [1� κNn(0jout)] ln [1� κNn(0jout)] +Nn(0jout) lnNn(0jout)g .

It is the same expression as for the entropy of reduced density operators. This indicaties
that the classical measurement of a number of particles leads to the same information
loss as the averaging over one of subsystems.
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T-constant �eld - 01

The T-constant electric �eld in d = D + 1 dimentions is de�ned as

E = (0,E (t), 0, ..., 0), E (t) =

8<:
0, �∞ < t � tin
E > 0, tin < t < tout
0, tout � t < ∞

,

There is no particle production after the time instant tout, and mean numbers of
particles Nn,ζ(� � �jout) created in a given state n = p, r (p is a D-dimensional
vector of momentum and r is spin) depend only on the time interval T = tout � tin.
Electric �eld acting during the su¢ ciently long time T creates a considerable
number of pairs only in a �nite region in the momentum space.

jp?j �
p
eE
hp
eET

i1/2
, �T/2 � p1/eE � T/2,

(see [5, 6, 7, 8]).
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T-constant �eld - 02
Number of particles created in vacuum initial state by T-constant �eld is, in fact, inde-
pendent of �eld action duration T , and are the same as in the case of the constant
uniform electric �eld [9, 10]:

Nn (0jout) = e�πλ, λ = (p2? +m
2)/eE .

Summation over quantum numbers turns into integration over the momentun p, and the
spin just gives numerical factor γ(d ):

∑
n
!

γ(d )V

(2π)d�1

Z
dp,

After the integration in Dirac case we get

S(ρ̌�(0)) = γ(d )kB
(eE )

d
2 TV

(2π)d�1
ADirac (d ,Ec/E ) ,

where Ec = m2/c is the critical �eld.

It is possible to estimate the entropy in strong Ec/E � 1, critical Ec/E = 1, and
weak Ec/E � 1 �eld limits. For example, for a strong �eld with d = 4 we have
ADirac (4, 0) = π2/6, for the critical �eld, we have ADirac (4, 1) � 0, 22. In the
case of a weak �eld the entropy has a small value of the order of
(πEc/E ) exp[�πEc/E ] for any d . For d = 3 the following estimations hold
ADirac (3, 0) � 0, 93, ADirac (3, 1) � 0, 2; for d = 2 the factor A (2, 0) is a value of
order of 1, and A (2, 1) = e�π.
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T-constant �eld - 03

Number of particles created in vacuum initial state by T-constant �eld is the same for
Dirac and Bose case:

Nn (0jout) = e�πλ, λ = (p2? +m
2)/eE .

After the integration in Klein-Gordon case we get

S(ρ̌�(0)) = kB
(eE )

d
2 TV

(2π)d�1
AK�G (d ,Ec/E ) ,

which di¤ers from Dirac expression only by absence of spin-factor γ(d ) and di¤erent
numerical coe¢ cient.

Estimations for di¤erent �eld strengths are the following: AK�G (4, 0) � 2, 21,
AK�G (4, 1) � 0, 22; AK�G (3, 0) � 1, 78, AK�G (3, 1) � 0, 2; AK�G (2, 0) � 1,
AK�G (2, 1) � e�π. In the case of weak �eld the entropy is a small value of the
order of (πEc/E ) exp[�πEc/E ] for any d .
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Conclusions

Explicit form of desity operators with di¤erent initial states were
constructed;

Explicit forms of reduced density operators for electron and positron
subsystems, and the explicit form of the density operator with
vacuum initial state after the measurement of number of particles
were obtained;

Entropy of these reduced density operator as a function of only mean
numbers of particles of a �nal state was obtained;

T-constant electric �eld was considered as an example. The entropy
of reduced density operators is porportional to the time of �eld action
T and strength of applied �eld in power d/2.
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Thanks

Thank you for your attention!
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