PARTICLE PRODUCTION PROPERTIES (FRAGMENTATION FUNCTIONS) IN HARD PROCESSES AND EXPERIMENTAL VIEW ON NOMAD

Oleg Samoylov

JINR, Dubna, Russia

Baikal Summer School at Bol'shie Koty July 22nd, 2008

OUTLINE

- Introduction
 - Fragmentation functions
 - Experimental view on fragmentation functions
 - The NOMAD experiment
- PION PRODUCTIONS
 - ullet Examples of π^\pm productions

OUTLINE

- INTRODUCTION
 - Fragmentation functions
 - Experimental view on fragmentation functions
 - The NOMAD experiment
- 2 PION PRODUCTIONS
 - Examples of π^{\pm} productions

WHAT ARE FRAGMENTATION FUNCTIONS?

1 They are dimensionless functions that discribed the final state single-particle energy distributions in hard scattering process $F^h(x,s) = 1/\sigma_{tot} \cdot d\sigma/dx(e^+e^- \rightarrow hX)$,

where $x = 2E_h/\sqrt{s}$ is the scaled hadron energy, \sqrt{s} is c.m. energy

Multiplicity of those hadrons $n_h(s) = \int dx \, F^h(x, s)$

FRAGMENTATION FUNCTIONS IN DIS

Fragmentation function in hadronic c.m. frame (HCMS)

$$F^h(x_F, W) = 1/\sigma_{tot} \cdot d\sigma/dx_F(\ell N \to \ell' h X),$$

where $x_F = 2p_Z^*/W$ is the Feynman-x variable, W is the invariant mass of the hadrons in HCMS

Multiplicity of those hadrons

$$n_h(W) = \int dx_F F^h(x_F, W)$$

FRAGMENTATION FUNCTIONS IN DIS

 Fragmentation function in Breit frame (BF) (connected to the HCMS by a longitudinal boost such that the time component of q becomes 0)

$$F^h(x_p, Q) = 1/\sigma_{tot} \cdot d\sigma/dx_p(\ell N \to \ell' h X),$$
 where $x_p = 2p^*/Q$ is the scaled hadron momentum, Q is the invariant mass of the exchanged boson

Multiplicity of those hadrons

$$n_h(Q) = \int dx_p F^h(x_p, Q)$$

DATA RESULTS EXAMPLE

SLD, TPC, DELPHI, ALEPH, ARGUS, OPAL experiments $(e^+e^- o \gamma/Z^0 o hX)$

AVERAGE CHARGED HADRONS MULTIPLICITY

WHY ARE FRAGMENTATION FUNCTIONS?

- NOMAD potentials
 - wide energy spectrum provides us study different variables E_{ν} , Q^2 , W, x_{B_j} , x_F , x_p
 - excellent reconstruction and resolution of the individual tracks, good calorimetry
 - let us taking good quality of the distributions
 - largest statistics of the neutrino interactions (\sim 1.1M DIS) is good chance to get most accurate results
- Important for theory Today exist <u>THREE THEORIES</u>: QEL, RES, DIS and no one for just νN (see talks by V.Naumov, O.Teryaev) Fundamental ingredients are prepared as model's cuts on Q², W

GOOD QUALITY OF THE PARTICLE IDENTIFICATION

- Current muon in Muon Chambers
- Charged particles $(\pi^{\pm}, p, ...)$ in Drift Chambers
- Neutral particles $(\gamma, n, ...)$ in Electromagnetic Calorimeter
- Neutral strange particles $(K_S^0, \Lambda, \bar{\Lambda})$ and photons $(\gamma \to e^+e^-)$ by V-like vertexes
- Possibility to study $\pi^0 \rightarrow \gamma \gamma$ production

OUTLINE

- INTRODUCTION
 - Fragmentation functions
 - Experimental view on fragmentation functions
 - The NOMAD experiment
- PION PRODUCTIONS
 - Examples of π^{\pm} productions

Thank you for your attention!

